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Ultrasonic measurements at 298°K as a fUDction of hydrostatic pressure to 7 kb for polycrystalline quartz and 
rutile yield the following values of pressure coefficients of the velocities of compressional (P) and shear (S) waves, 
the adiabatic bulk modulus (KS), and its isothermal pressure derivative: 

Property Units Quartz Rutile 

(a Qn Vp/aP)T,P=O mbar- 1 2.34 (±0.04) 0.83 (±O.OS) 

(a ,.Qn vS/ap)T,p=O mbar- 1 -0.80 (±0.03) 0.18 (±0.03) 

KS mbar 0.378 (±0.010) 2.10S (± 0.043) 

(aKS/ap)T,p=O 6.S (±0.04) 6.4 (± 0.08) 

These data are discussed in relation to the structure and the phase instability at high pressure. The relatively small 
values of (a Qn VS/ap)T may indicate that neither high thermal gradient nor partial melting is required to account 
for the low velocity layer in the earth. 

Transfonnation of the elasticity of the earth into 
parameters of composition, pressure, and temperature 
depends, in large part, on the use of equations of state. 
Parameters for the appropriate equations of state may 
be obtained for pressure above a few hundred kilobars 
from shock-wave experiments and for lower pressures 
from static or dynamic measurements in the labora­
tory. Because the chemical and mineralogical compo­
sition of the interior of the earth is still largely un­
known, the parameters used in the equations of state 
may be based on those of model materials, or on some 
fonn of a universal equation of state (believed valid by 
some authors for suitably restricted materials). The 
universal equations of state were discussed recently 
by Simmons and England [I] . Better understanding 
of the equations of state is most likely to arise from 
careful measurements on specific materials. In this 
note, we report data on the elastic properties of hot-

pressed polycrystalline quartz and rutile as a function 
of pressure. 

Our measurements of the elastic properties were 
made on polycrystaliine specimens produced by 
means of the resistance hot-pressing method described 
by Crandali et al. [2]. The shape of the specimens was 
a rectangular prism. The microstructural characteris­
tics of the rutile specimen have been described earlier, 
and this specimen was cut from one of several speci­
mens used in the earlier study of room-temperature 
elastic properties of this material [3] . Specific infor­
mation about each specimen follows: 
Quartz: density at 298°K, 2.645 g/cm3 (0.2% poro­

sity); size, 1.2338 X 1.2329 X 0.6122 cm; 99.9% 
Si02 with traces of Al, Mg, Ti, Fe, and Zr (each 
less than 0.01%). 

Rutile (I): density at 298°K, 3.189 gJcm3 (25% poro­
sity); size, 1.0127 X 0.9943 X 0.4877 cm; 99.9% 
Ti02 with 0.03% Pb, 0.02% Fe, and 0.01 % Zn. 
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Rutile (II): density at 298°K, 4.212 g/cm3 (0.9% 
porosity); size , 1.0424 X 0.9848 X 0.8878 cm ; 
99.9% Ti0 2 with 0.03% Pb, 0.02% Fe, and 0.01% 
Zn. 
The measurement of sound velocities at room con­

ditions and as a function of hydrostatic pressure to · 
about 7 kb were made with the pulse-echo-overlap 
method [4] as modified by Chung et al. [5]. We used 
the pressure system described in detail by Brace [6] 
with the exceptions that we used reagent grade petro­
leum ether as the pressure medium, and the pressure 
was read directly from a precalibrated, 7500-bar Heise 
gauge. The readability of this gauge is better than 
0.2%. X-cut and AC-cut quartz transducers with reso­
nance frequencies of 20 MHz were used for generation 
of compressional (P) and shear (S) waves, respectively. 
The material used for acoustic bonding between 
specimen and transducer was a 50% (by volume) mix­
ture of phthalic anhydride and glycerine. 

The primary data determined in our ultrasonic ex­
periments were (1) P and S velocities in each specimen 
at 25°C and I bar, and (2) pulse-repetition frequencies 
corresponding to these velocities as a function of pres­
sure to about 7 kb . The first derivative of an elastic 
modulus with respect to pressure was calculated from 

where Fjo and Fjp are the corrected pulse-repetition 
frequency at zero-pressure and at pressure P, respec­
tively. KT is the isothermal bulk modulus calculated 
from the adiabatic bulk modulus KS by the relation 
KT = Ks(1 + aTy)-l, where the quantity (1 + aTy) 
is I .0078 for quartz and 1.0116 for ru tile at 300oK. 
Mj is an elastic modulus , and the subscript (j) refers 
to either the longitudinal or transverse elastic mode. 
From the values of {dM/dP}p=o we calculated 
values of the first pressure derivatives of P and S 
velocities from 

(CJ)J p=o = CP~Vj [C~)T -
Po ] \ _ _ (V)2) , 
KT I p=o 

(2) 

where Po is the initial density of the specimen. 
The dependence of the quantity (Fjp/Fjo)2 on 

pressure for both quartz and rutile was linear within 
experimental precision; the data are given in table 1. 
Variations with direction in the velocities are due 
probably to physical inhomogeneities in the speci­
mens and represent the apparent anisotropy of the 
specimens. The anisotropies are rather small, about 
the same size as the experimental uncertainties in our 
measureme~lt of velocities. The values of (Fjp/Fjo)2 
and their dependence on pressure vary slightly with 
direction in the sample, are probably real , and imply 
also that the specimens were slightly anisotropic. 
This dependence on direction of the elastic properties 
is attributed to the effects of residual porosity. The 
effects of pores and cracks on the elastic properties 
have been discussed by Walsh [7] . 

Various elastic parameters for the specimens are 
listed in table 2. On the basis of these parameters, 
the isotropic elastic properties of polycrystalline 
aggregates at zero-porosity were evaluated. The elastic 
moduli of non-porous poly crystalline aggregates can 
be estimated from acoustic measurements made on a 
porous aggregate (see Weil [8]). The shear modulus is 
given by the Weil-Hashin relation 

and the adiabatic bulk modulus 

where 

kl = 2(4 - 50)/(7 - 50) , 

k2 = (I + 0)/2 (1 - 20) , 

(3) 

(4) 

and (J is the volume fraction of total pores, a is Pois­
son's ratio, and the superscript (0) refers to the value 
at zero-porosity . From these values of 110 and K~ all 
the other isotropic elastic parameters are calculated 
and these values may be compared with the quantities 
obtained on the corresponding single crystals. Effects 
of porosity upon pressure derivatives of the elastic 
moduli are complicated not only by the manner in 
which the porosity-sensitive modulus changes with 
pressure but also by the change of porosity with 
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Table 1 
Measured properties of polycrystalline quartz and rutile at 298°K. 

Initial Compressional Shear CFp/Fpo) 2 (Fs1Fso )2 
Material density, PO velocity, Vp velocity, Vs 

(gfcm3) (km/sec) (km/sec) (at 10 kb) (at 10 kb) 

Quartz 2.645 6.062 4.106 1.06480 1.00170 
(±0.007) * (±0.005) * (±O.00023) * (±0.00011) * 

Rutile I 3.189 8.281 4.760 1.02075 1.00302 
(±0.009) * (±Q.007) * (±0.00024) * (±0.00017) * 

Rutile II 4.212 9.146 5.146 1.01984 1.00679 
(±0.009) * (±0.007) * (±0.00020) * (±0.00013) * 

* These uncertainties are due to observed variations in the,property measured for different directions of the specimen. 

Table 2 
Elastic properties of polycrystalline quartz and rutile (at 298°K). 

Quartz Rutile 
Quantity Unit (measured) 

PO g/cm3 2.645 
Vp km/sec 6.062 

Vs km/sec 4.106 
LS (= POVp2) 109dyn/cm2 971.8 
}.L (= PO Vs 2) 109dyn/cm2 446.0 

Ks 109dyn/cm2 377.2 

KT 109dyn/cm2 374.3 

Us none 0.076 
(aVp/aP)T 10- 3 (km/sec)/kb 14.2 
(aVS/aP)T 10-3 (km/sec)/kb -3.3 

(aLslaP)T none 7.16 
(a}.L/aP)T none 0.47 
(aKslaP)T none 6.53 

(aKT/aP)T none 6.54 

(aoslaP)T 1O-3/kb 4.93 

* Extrapolation based on Rutile II data (see text). 

pressure. In an earlier discussion [9] of this problem, 
we suggested that for porosity less than 1 % 

(extrapolated) 

2.649 

6.066 

4.110 

974.6 

447.4 

378.1 

375.2 

0.076 
14.2 

-3.3 

7.2 

0.5 

6.5 

6.5 

4.9 

dQnM = dQnMO 
dP dP 

(5) 

(measured) (extrapolated) * 
(I) (ll) 

3.189 4.212 4.250 
8.281 9.146 9.193 
4,760 5.102 5.122 

2186.7 3523.6 3592 

722.5 1096.3 1115 

1223.4 2061.9 2105 

1209.3 2038.3 2081 

0.253 0.264 0.274 

21.0 7.6 7.7 

- 0.6 0.9 0.9 

5.14 7.57 7.7 

0.42 0.91 0.9 

4.58 6.35 6.4 

4.57 6.33 6.4 

19.6 0.46 0.4 

is a good approximation. Our data have been corrected 
on the basis of eq. (5) and the results are shown in 
table 2 under the column designated "extrapolated". 

The data on the highly porous rutile specimen 
(Rutile I) are included here to illustrate the important 
result that the intrinsic properties of materials cannot 
be estimated reliably from the properties of highly 
porous materials. Anderson et al. [10] recently 
pointed out this difficulty in connection with their 
earlier measurements of the elastic properties of a 
poly crystalline sample of forsterite with 6% porosity. 
Our present set of data on Rutile I shows not only 
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that the elastic properties of zero-porosity material 
estimated from measurements made on highly porous 
material are inaccurate but also that even the sign of 
the derivatives with respect to pressure may be incor­
rect. 

The reliability of measurements made on materials 
of low porosity (less than 1%, say) for the estimation 
of the intrinsic properties is shown by a comparison 
of our data on the quartz sample with the correspond­
ing values predicted from single crystal data. The single 
crystal elastic constants of quartz were determined as 
a function of hydrostatic pressure to 3 kb by McSki­
min et aL [11] . To compute the isotropic elastic 
parameters from these data, we followed the Voigt­
Reuss-Hill (VRH) approximation and the variational 
methods (VM) of Hashin and Shtrikman (see, for 
example, Lowrie [12]). The general expressions for 
the pressure derivatives of the isotropic VRH moduli 
for trigonal crystals have been given earlier in terms 
of the single crystal elastic constants and their pres­
sure derivatives [13] . Similar expressions may be 
found for the VM bounds from equations derived by 
Peselnick and Meister [14]. The values for the pres­
sure derivatives of the velocities can then be calcu­
lated from eq. (2). The result of these calculations 
shows that pressure derivatives of the shear and bulk 
moduli are 0.44 and 6.42, respectively, from the VRH 
scheme whereas the VM scheme yields 0.44 and 6.41 
for the same properties. Soga [15] used the single 
crystal data of McSkimin et al. [11] to estimate the 
pressure coefficients of the isotropic wave velocities 
and the bulk modulus on the basis of the VRH ap­
proximation. Comparison of the calculated isotropic 
values with the experimental data shown in table 2 
reveals good agreement between the measured poly­
crystalline data of quartz and the isotropic VRH and 
VM moduli calculated from the single crystal data. 
Similar comparisons cannot be made for rutile be­
cause the single-crystal elastic constants, as a function 
of pressure, are not yet available. Tables published by 
Simmons [16] list the maximum and minimum 
limits of isotropic compressional and shear velocities 
in units of (km/sec) as 9.607 and 9.071 for Vp and 
5.474 and 4.909 for Vs for rutile . The present values 
of Vp and Vs are within these limits and they are in 
good agreement with velocities calculated from the 
poly crystalline elastic constants [3] reported earlier. 

Commenting on a negative pressure dependence of 

the isotropic shear modulus for some oxides, Ander­
son [171 predicted the value of the first pressure deri­
vative of the shear modulus for rutile to be "negative 
but close to zero". As seen from table 2, our experi­
mental value determined on a dense polycrystalline 
rutile specimen is (aJJ./ap) = + 0.91; this value does not 
support the prediction made by Anderson. 

Quartz has an unusually small value of Po is son's 
ratio. Its rate of change with pressure is greater than 
that of any other oxide or silicate yet measured; com­
pare the value of 4.9 per mbar for quartz with 0.18 
for periclase. This fact is an obvious consequence of 
the large change in K s with pressure compared with 
the change in JJ.. The high value of (aus/aph for 
quartz may be an indication of the phase instability 
of the crystal lattices at high pressures. At room tem­
perature, Si0 2 undergoes a change of phase from 
a-quartz to coesite at a pressure of about 20 kb and 
from coesite to stishovite at a pressure of about 100 
kb. We speculate that the high value of (au/aph of 
poly crystalline quartz may be associated with the 
phase change to coesite. 

Consideration of the values in table 2 shows that 
rutile possesses some of the common properties of 
oxides: a low value of compressibility, high value of 
<I> = K sip, high wave velocities, and an intermediate 
value of (a Qn Ks/aph. The value of (a Qn Ks/aph of 
3.1 mb- 1 for rutile may be compared with 2.6 for 
periclase and 1.7 for corundum. The properties of 
quartz, on the other hand, are not typical of other 
closely packed oxides: its value of compressibility is 
high, <I> is low, wave velocities are low, and 
(a Qn Ks/3Ph is 17 mb- l . 

A final observation of importance to geophysicists 
is that (a vs/aph is a small negative quantity for 
quartz but a small positive quantity for rutile. The 
small values of (a vs/aph for these two materials 
may imply that excessive thermal gradients are not 
required to produce a low velocity layer in the earth's 
mantle. 
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